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We study a two-state symmetric noise, with a given waiting time distributioncstd, and focus our attention
on the connection between the four-time and two-time correlation functions. The transition ofcstd from the
exponential to the nonexponential condition yields the breakdown of the usual factorization condition of
high-order correlation functions, as well as the birth of aging effects. We discuss the subtle connections
between these two properties and establish the condition that the Liouville-like approach has to satisfy in order
to produce a correct description of the resulting diffusion process.
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I. INTRODUCTION

Dichotomous noise is one of the fundamental representa-
tions of stochastic processes. It is used in random walks and
quantum two-state systems, as well as other mathematical
models of physical and biological processes. This represen-
tation is used because it is simple enough to obtain analytic
solutions to dynamical equations, yet rich enough to model a
variety of complex physical and biological phenomena. The
history of such two-state stochastic processes dates back
more than a century to Markov representations of random
telegraphic signals and yet such noise still finds application
in models of contemporary complex phenomena. A few re-
cent examples of complex phenomena modeled by dichoto-
mous stochastic processes are disorder-induced spatial pat-
terns[1], first-passage[2] and thermally activated escape[3]
processes, hypersensitive transport[4], rocking rachets[5],
intermittent fluorescence[6], stochastic resonance[7–9],
quantum multifractality[10], and blinking quantum dots
[11,12]. These and many other applications study the physi-
cal effects of dichotomous fluctuations, either Poisson or
non-Poisson, without addressing, however, the consequences
that relaxing the Poisson assumption might have on the high-
order correlation functions.

In this paper we are interested in the high-order correla-
tion properties of the dichotomous noisejstd—that is, a sym-
metrical two-state statistical process with the values +W and
−W. Usually, for the purpose of making statistical calcula-
tions we focus on stationary noise and use the stationary
correlation function

Fjsut2 − t1ud =
kjst1djst2dl

kj2l
, s1d

where the brackets denote an average over an ensemble of
realizations of the dichotomous noise. It is worth illustrating
the difference between this dichotomous noise and a Gauss-
ian noise with the same two-point correlation function. The
difference between the two processes resides in the high-

order correlation functions. Furthermore, because the noise is
symmetric, we only need to focus on even-time correlation
functions. Notice that we shall adopt the following conven-
tion; the discussion of the correlation function
kjst1djst2djst3d¯jstndl implies the time orderingt1ø t2ø t3
ø ¯ ø tn.

According to Ref.[13], for Gaussian noise the fourth-
order correlation function is related to the second-order cor-
relation function via the following expression:

kjst1djst2djst3djst4dl = kjst1djst2dlkjst3djst4dl + kjst1djst3dl

3kjst2djst4dl + kjst1djst4dlkjst2djst3dl.

s2d

The higher-order correlation functions are analogously de-
fined. In the case where all times are identical, the definition
(2) yields

kj2nl = s2n − 1d!!kj2ln, s3d

a property ensuring that the distribution ofj is a Gaussian
function. By the same token, it seems natural to factor the
fourth-order correlation function for the dichotomous sym-
metric noise as

kjst1djst2djst3djst4dl = kjst1djst2dlkjst3djst4dl, s4d

with analogous prescriptions for the higher-order correlation
functions. In the case of equal times, the definition(4) re-
duces to

kj2nl = kj2ln, s5d

which is similar, but not identical, to Eq.(3). Equation(5) is
implied for the moments of a stochastic process with the
equilibrium distribution function

PHYSICAL REVIEW E 70, 046118(2004)

1539-3755/2004/70(4)/046118(9)/$22.50 ©2004 The American Physical Society70 046118-1



psjd =
1

2
fdsj − Wd + dsj + Wdg. s6d

Hereafter, we refer to property(4) and the factorization of
the corresponding higher-order correlation equations as di-
chotomic factorization(DF). It seems evident that the ratio-
nale for the DF property is given by the fact that it yields the
distribution of Eq.(6). In general, the reverse might not be
true. The adoption of a dichotomous noise, fitting Eq.(6),
might not yield the DF property. In this paper, with the help
of numerical simulation, we shall prove that in the non-
Poisson case it does not.

The vast majority of papers dealing with dichotomous
noise assume the statistics of the two states to be Poisson;
that is, the length of time the system remains in a given state
has an exponential distribution. It is important to remark that
the simplest physical phenomenon modeled by the stochastic
variablejstd is diffusion. This means that all the properties of
the phenomenon can be determined by the solution to the
stochastic equation

dx

dt
= jstd. s7d

Allegrini et al. [14] found that the evolution of the probabil-
ity density, corresponding to the dichotomous Langevin
equation(7), is given by the generalized diffusion equation
(GDE)

]psx,td
]t

= kj2lE
0

t

dt8Fjst − t8d
]2

]x2psx,t8d, s8d

where the two-point correlation function under the integral is
arbitrary.

It is interesting to note that the same GDE emerges from
the analysis of Cáceres[15], who studied the Langevin
equation

dx

dt
= − gxstd + jstd, s9d

with jstd being a dichotomous noise andg a friction param-
eter of arbitrary intensity. This same equation was studied in
an earlier paper by Annunziatoet al. [16]. It is evident that
with g=0, Eq.(9) becomes equivalent to Eq.(7). The equa-
tion for densities found by Cáceres[15] is identical to that
found by Annunziatoet al. and both results forg→0 reduce
to Eq. (8). These results are valid independently of the form
of the correlation functionFjstd. The fact that the GDE is
obtained using these different approaches is significant, since
the work by Cáceres rests on van Kampen’s lemma[17] and
the Bourret-Frisch-Pouquet theorem[18], while the theory
adopted by Annunziatoet al. is the same as that used by
Allegrini et al. [14], the Zwanzig’s projection method[19].
In any event, both approaches adopt a Liouville-like perspec-
tive.

Bolognaet al. [20] established that the GDE produces the
same higher-orderx moments as those derived from the in-
tegration of the diffusion equation, supplemented with the
assumption that the correlation functions of the dichotomous
variablejstd fit the prescription of DF. Bolognaet al. also

established that the exact solution of the GDE does not lead
to the process of Lévy diffusion, a result previously obtained
using stochastic trajectories, thereby suggesting a possible
conflict between the adoption of stochastic trajectories obey-
ing renewal theory in the continuous time random walk
(CTRW) formalism and the adoption of a Liouville-like ap-
proach to the dynamics[20]. The DF assumption is not ex-
plictly made by Cáceres[15]. However, the analysis of Bo-
lognaet al. indicates that the theory of Cáceres[15] implies
the DF property. Others have also assumed non-Poisson sta-
tistics, while still retaining the DF property[21].

We establish herein that the DF condition breaks down as
a consequence of the non-Poisson condition. Furthermore,
we show that violation of the DF condition emerges from
non-Poisson statistics in the same way as do aging proper-
ties. These results have the desirable effect of establishing
the limits of validity of the elegant GDE, leaving aside for
the present the analysis of the issue as to whether the density
and Liouville-like formalism are compatible with the emer-
gence of these properties.

II. FOUR-TIME CORRELATION FUNCTION

In this section we show that in the non-Poisson case, the
four-time correlation function of the dichotomous noise de-
parts from the DF prescription. It has to be pointed out that
our arguments are based on examining a single sequencej,
and thus on time averages, rather than on ensemble averages.
We assume that the theoretical sequence is built up by cre-
ating a sequencehtij of real positive numbers using the prob-
ability density

cstd = sm − 1d
Tsm−1d

st + Tdm . s10d

The choice of this analytical form is determined by simplic-
ity, in which we obtain in the time asymptotic limit an in-
verse power law with indexm, while satisfying the normal-
ization condition

E
0

`

cstddt = 1. s11d

The parameterT.0 ensures the normalization condition, re-
quired by the fact thatcstd is a probability density and is
related to the average time interval generated by the density.
To generate a realization of the time series we split the time
axis into many time intervals of lengths determined by the
set of numbershtij. The first interval begins at timet=0 and
ends at t=t1, the second begins att=t1 and ends att
=t1+t2, the third begins att=t1+t2 and ends att=t1+t2
+t3, and so on. We refer to this sequence of time intervals,
which is not observable, as the theoretical sequence. The
dichotomic sequence under study in this paper, which can be
observed, is created as follows. At the beginning of any time
interval we toss a coin and fill the interval with either the
valueW or the value −W, according to whether we get a head
or a tail. Thus, if we move along the observable sequence,
we meet large time portions of the sequence, within which
the sequence retains the same value, eitherW or −W. We
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refer to these time intervals with the same value ofj as
experimentallaminar regions and to the corresponding dis-
tributions of time lengths ascexptstd. The adoption of the
suggestive termexperimentalreflects the fact that this pro-
cedure is the same as the one we would adopt when making
a real experimental observation. A relevant example is the
phenomenon of blinking quantum dots[12], which has been
the object of some very interesting theoretical papers[22,23]
using dichotomous stochastic processes. A single quantum
dot undergoing a process of resonant fluorescence produces
an intermittent light signal, which can be identified with the
sequencejstd here under study, withW and −W meaning
light on and light off, respectively.

We point out thatcexptstd does not necessarily coincide
with cstd. According to Ref.[24] the theoretical waiting time
distribution cstd is connected to the experimental waiting
time distribution by the Laplace transform relation

ĉsud =
2ĉexptsud

1 + ĉexptsud
, s12d

where the Laplace transform of a functionfstd is denoted by

f̂sud. However, in the time asymptotic limitcexptstd has the
same inverse power-law form as doescstd, that being Eq.
(10), with the same power-law indexm. In the special case of
blinking quantum dots the experimental waiting time distri-
bution is found to be an inverse power law with indexm,2.
Here we consider the complementary casem.2, so as to
realize a condition compatible with the existence of a station-
ary correlation function forjstd.

Due to the theoretical prescription that we adopt to realize
the dichotomic sequence under study, a given experimental
laminar region—namely, a time interval where, as earlier
pointed out,jstd keeps the same sign—might correspond to
an arbitrarily large number of theoretical time intervals, to
which the coin tossing procedure assigns the same sign. We
shall refer to these theoretical time intervals as theoretical
laminar regions or, more simply, as laminar regions. It is
evident that the beginning of a laminar region corresponds to
the occurrence of a random event—namely, the coin tossing
that determines its sign. The laminar regions are not observ-
able, while the experimental laminar regions are observable,
by definition, and begin and end with a random event. We
cannot establish if other random events occur or not, and
how many, between the beginning and the end of an experi-
mental laminar region.

The theoretical approach that we adopt in this section
rests on the same time average procedure as that adopted by
Geiselet al. [25]. Let us devote some attention to the pre-
scription given by these authors to evaluate the two-point
correlation functionFjsut2− t1ud [25]:

Fjst2 − t1d =

E
t2−t1

`

ft − st2 − t1dgcstddt

E
0

`

tcstddt

, s13d

where we assumet2. t1. This equation for the correlation
function implies that, with a window of sizet2− t1, we move

along the entire(infinite) theoretical sequence of laminar re-
gions and count how many window positions are compatible
with the window being located within a theoretical laminar
region, which must have a length larger than the window
size. In addition we have to count the total number of win-
dow positions. In other words, the stationary correlation
function of jstd is nothing but the probability that the two
timest1 andt2 are located within the same laminar region. If
these two times are located in different laminar regions, the
adoption of the coin tossing procedure for any contribution
of a given sign to the correlation function would produce,
with equal probability, a contribution with opposite sign,
thereby providing a vanishing contribution. An attractive
way to explain this procedure is through the concept of ran-
dom events. First of all, the lengths of the laminar regions
are determined by the random drawing of the numberst,
with distribution cstd. At the border between one laminar
region and the next we toss a coin to decide the sign of the
next laminar region. This coin tossing is a random event and
no random event can occur between two times located in the
same laminar region. If the two times are located in different
laminar regions, one or more random events must have oc-
curred between them. Thus the correlation functionFjst2
− t1d can also be interpreted as the probability that no random
event occurs between timest1 and t2.

We evaluate the four-time correlation function, using the
same arguments. Consider four times, ordered as
t1, t2, t3, t4. The corresponding correlation function exists
under the following conditions. The first condition is that all
four times be located in the same laminar region. The second
condition is compatible with the pairsst1,t2d and st3,t4d be-
ing located in distinct laminar regions. This means that the
times t1 and t2 belong to a laminar region, denoted byT1,2,
the timest3 and t4 belong to a laminar region denoted by
T3,4, and T1,2ÞT3,4. Using the random event concept, the
second condition implies that no random event occurs be-
tween t1 and t2, or betweent3 and t4, while at least one
random event occurs betweent2 and t3.

We use the notationpsi j d to denote the probability thatti
and tj belong to the same laminar region. Thus the prescrip-
tion for the correlation function given by Eq.(13) can be
expressed as the probability function

Fjst2 − t1d = ps12d. s14d

We also use the notation

psi j d ; 1 − psi j d s15d

to denote the probability that at least one transition occurs
between timesti andtj. It is convenient to use the conditional
probability concept and the Bayesian notation(see, for in-
stance,[26]). We denote the joint probability of eventsA and
B by psA,Bd and the conditional probability of occurrence of
eventA given eventB with psAuBd. Thus, we have

psAuBd =
psA,Bd
psBd

. s16d

We denote the conditional probability that eventA occurs,

given that eventB does not, bypsAu B̄d. Using the prescrip-
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tion of Eq. (16), the latter conditional probabilitypsAu B̄d is
expressed as follows:

psAuB̄d =
psAd − psA,Bd

1 − psBd
, s17d

where we have used the relationpsAd=psA,Bd+psA,B̄d for
the numerator.

The probability that timesti and tj belong to the same
laminar regionTi,j and that, simultaneously, timestr and ts
belong to the same laminar regionTr,s, regardless of whether
Ti,j coincides withTr,s or not, is a joint probability expressed
by the symbolpsi j ,rsd. Thus the four-time correlation func-
tion can be formally expressed as follows:

kjst1djst2djst3djst4dl
kj2l2 = ps12,34d. s18d

On the other hand, using the notation introduced earlier,
we have two contributions to the four-time correlation func-
tion. The first contribution is determined by all four times
being in the same laminar region with no random event oc-
curring betweent1 and t4 (condition 1), whereas the second
contribution corresponds to the probability that at least one
random event occurs betweent2 and t3, given the condition
that no random event occur betweent1 and t2 and none be-
tween t3 and t4 (condition 2). This yields the following ex-
pression:

ps12,34d = ps14d + ps34u12,23̄dps12u23̄dps23̄d. s19d

Here ps34u12,23̄d is the probability thatt3 and t4 belong to
the same laminar region, given that also the timest1 and t2
do, while the timest2 and t3 do not. The symbolsps12u23̄d
denote the probability that the timest1 and t2 belong to the
same laminar region, given the fact that the timest2 andt3 do

not. Finally, the symbolps23̄d denotes the probability that the
times t2 and t3 do not belong to the same laminar region—
namely, the probability than one or more events occur be-
tween t2 and t3. This formula is exact, but it is not fully
adequate for the purpose of our discussion, given the fact
that it is difficult to turn it into an analytical expression, in
terms of the correlation functionFjstd. Thus we make the
following approximation:

ps34u12,23̄d < ps34u23̄d. s20d

We use the condition(20), thereby replacing Eq.(19) with

ps12,34d = ps14d + ps12u23̄dps34u23̄dps23̄d. s21d

The contribution due to condition 2 is given by the second
term on the right-hand side of Eq.(21), which, although not
exact, is sufficiently accurate for the purpose of this paper.

The physical motivation for this approximation is that
once one or more events occurred betweent2 and t3 any
memory of the fact that the timest1 and t2 were in the same
laminar region is lost. This property is exact at the level of
the single trajectories, whose time evolution after the occur-
rence of an event is independent of the earlier time evolution.
However, the probability concept implies a statistical consid-

eration on all the possible trajectories and, consequently, a
possible violation of the condition(20), a breakdown that
might become significant especially in the non-Poisson case
here under study. For this reason it is convenient to numeri-
cally evaluate the error produced by this approximation in a
physical situation corresponding to a strong deviation from
Poisson statistics. In Fig. 1, we show the result of the nu-
merical analysis done for the casem=2.5 andktl=2.0. The
three-dimensional surface shows the numerical relative error
(RE) sDd of Eq. (21)—namely,

D ; 2
ps14d + ps12u23̄dps34u23̄dps23̄d − ps12,34d

ps14d + ps12u23̄dps34u23̄dps23̄d + ps12,34d
. s22d

The results are very encouraging: the error is always very
small, and even vanishingly small, for botht1; t2− t1 and
t2; t3− t2, at either small or large values of these two times.
At intermediate values oft1 and t2, we find that the RE
reaches the maximum value of 1.25%. Notice that we kept
fixed the parametert3; t4− t3, and we assigned to it the
valuet3=1.0.

To transform the equality, Eq.(21), into a relation involv-
ing correlation functions, we use Eq.(18) for the four-time
correlation function. The two-time correlation functions
emerge from the second term on the right-hand side of Eq.
(21) via the proper use of Eqs.(14), (17), and(15). Thus, we
obtain

kjst1djst2djst3djst4dl
kj2l2

= Fjst4 − t1d

+
fFjst2 − t1d − Fjst3 − t1dgfFjst4 − t3d − Fjst4 − t2dg

1 − Fjst3 − t2d
.

s23d

Equation(23) is an analytic, although approximate, expres-
sion for the four-time correlation function. We stress that the
general form of Eq.(23) is not factorable and is therefore
distinct from DF. We checked numerically that the difference

FIG. 1. The relative errorD of Eq. (22) as a function oft1

; t2− t1 and t2; t3− t2. The contour plot on thet1,t2 plane indi-
cates sets of points of this plane with the sameD value. Note that
theD intensity becomes larger and larger moving towards the center
of the contour plot that identifies the maximum ofD.
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between the DF and the exact four-times correlation function
is at least ten times larger than the approximation involved in
Eq. (23).

Note that in the Poisson case, the waiting time distribution
cstd is exponential. Using the prescription given by Eq.(13)
it is not difficult to show that the correlation function ofj is
also exponential. Then, after tedious but straightforward al-
gebra, we establish that Eq.(23) reduces to

kjst1djst2djst3djst4dl = kjst1djst2dlkjst3djst4dl, s24d

which coincides with Eq.(4); that is, the process becomes
compatible with the DF. Given that the DF holds true for the
four-time correlation function, it is possible to extend the DF
property to the 2N-time correlation function using induction.

Thus, we conclude that the four-time correlation condition
(23), for waiting times that have non-Poisson statistics, vio-
lates the DF underlying Eq.(8). This violation of the factor-
ization property seems to be a satisfactory explanation as to
why the GDE[20] does not yield the proper Lévy diffusion
in the asympotic limit. On the other hand, using the results of
this section we recover the results of the numerical calcula-
tions and theoretical prediction of the fourth moments ob-
tained by Allegriniet al. [27] and, independently, by other
groups[28]. To establish this latter point we integrate Eq.(7)
with the initial conditionxs0d for all the trajectories. Further-
more, we evaluate the fourth power ofxstd and average over
all the trajectories of the Gibbs ensemble. By using the sta-
tionary condition, which makes this correlation function de-
pend only on the time differences, rather than on the absolute
time, we obtain

kx4stdl = 8E
0

t

dt4E
0

t4

dt3E
0

t3

dt2E
0

t2

dt1kjst1djst2djst3djst4dl.

s25d

Introducing the newly obtained expression for the fourth-
order correlation, Eq.(23), into Eq. (25), in the time
asymptotic limit the leading contribution to the fourth mo-
ment is given by the first term on the right-hand side of Eq.
(23). Therefore we replace the integrand in Eq.(25) with
Fjst4− t1d, and using the inverse power-law form of the cor-
relation function, we carry out the four-time integrations and
obtain kx4stdl~ t6−m. By extending this way of proceeding to
the calculation of the 2n-times correlation function, we de-
rive the general result

kx2nstdl ~ t2n−m+2 for 2 ø m ø 3, s26d

in agreement with the numerical results of Ref.[27], while,
for higher values ofm, we have

kx2nstdl ~ tn for m . 3, s27d

wheren;maxs2n−m+2,nd.
The asymptotic results(26) and(27) establish that the 2n

moments do not have the scaling corresponding to the DF
condition. If we assume that the condition of Eq.(4) applies,
in keeping with the nature of the GDE, instead of Eq.(26)
we would obtain, for 2ømø3, kx2nstdl~ tns4−md, with one
factor, which depends onm, occurring for each order of the

moment. Similarly, form.3, we would obtainkx2nstdl~ tn,
again with one factor for each order of the moment. Equation
(27) is a consequence of non-Poisson statistics. No matter
how large m is, the diffusion process departs from the
monoscaling condition, even if the departure is perceived
through moments of increasing order with increasingm.
Consequently, the DF implies the existence of the scalingx
~ td, with the scaling index given by

d =
4 − m

2
for 2 ø m ø 3, d =

1

2
for m . 3, s28d

wherem−1 is the Lévy index. This latter result agrees with
the scaling predicted by the GDE, as established in Ref.[20].
On the other hand, the asymptotic results(26) and (27) es-
tablish that the breakdown of the DF condition yields the
breakdown of the monoscaling condition determined by the
DF condition. Here the central fact to keep in mind is that
Eq. (7) generates Lévy walks, rather than Lévy flights. A
Lévy flight is a kind of random walk in which the step
lengths have an inverse power-law distribution, so the sec-
ond moment of the dynamical variable diverges. The Lévy
walk, on the other hand, ties the length of a step to the time
required to take the step, resulting in a finite second moment
for the dynamical variable. Furthermore, it takes an infinite
time for a Lévy walk to yield the same scaling as a corre-
sponding Lévy flight, the latter scaling index being given by

d =
1

m − 1
for 2 ø m ø 3, d =

1

2
for m . 3. s29d

For this reason, the Lévy walk, introduced by Shlesingeret
al. [29], can be considered to be a manifestation of the living
state of matter(LSM) [30], in the sense described in some
recent work[31,32]. The LSM is interpreted as the existence
of a scaling condition intermediate between that of dynamics
and thermodynamics and which can last forever.

III. AGING

In this section we adopt the Bayesan formalism to evalu-
ate the correlation functions in a nonstationary condition.
This enables us to establish that the breakdown of the DF
condition is closely related to aging.

Before proceeding with the formalism, we briefly review
why non-Poisson statistics produces aging, as discussed in
detail in Refs.[30,33]. Suppose that we create an infinite
sequence of time intervals of lengthti—namely, the theoret-
ical sequence discussed earlier. As earlier mentioned, we cre-
ate the observable sequence by filling the time intervals,
called laminar regions, with eitherW or −W, according to the
coin tossing prescription, with the first laminar region begin-
ning at timet= t0. Let us imagine, to facilitate the discussion
of this section, that the theoretical sequence is observable,
even if in practice it is not. If we begin the observation
process at the same time when the theoretical sequence is
generated, the result of our observation yields the waiting
time distribution of Eq.(10). If the observation of the theo-
retical sequence begins at a given timet1. t0, the distribu-
tion of the waiting times before the first exit from the laminar

NON-POISSON DICHOTOMOUS NOISE: HIGHER-… PHYSICAL REVIEW E 70, 046118(2004)

046118-5



region, denoted byct1,t0
std, will not coincide withcstd. This

is a consequence of the first laminar region observed having
begun at any time betweent1 and t0. Thus, the resulting
waiting time will be, in general, shorter than the real sojourn
time generated bycstd. In the Poisson case this shortening of
the time does not have any effect on the shape ofct1,t0

std,
which remains identical tocstd. In the non-Poisson case, on
the contrary, delaying the process of observation does influ-
ence the shape ofct1,t0

std, causing it to depart from the form
of cstd [30,33].

Let us now address the problem of building up the corre-
sponding aging correlation function ofjstd. We study the
correlation betweenjst2d and jst1d, with the condition that
t2. t1. t0, t0 being the time at which the laminar region
begins. We solve this problem in two steps. In the first step
we define the correlation functionAst0dst2− t1d, without re-
quiring that the laminar region begins att= t0, but that it in
fact begins at a time intermediate betweent1 and t0. This
corresponds to stating thatAst0dst2− t1d is a correlation func-
tion of undefined age,younger, though, than thest1− t0d-old
correlation function. In the second step we set the additional
condition that the laminar regions begin att= t0, and we give
the prescription to determine the correlation functionFj

st0d, a
notation denoting in fact thest1− t0d-old correlation function.
The latter aging correlation function fits the earlier definition
of ct1,t0

std. The corresponding analytical expression will
make it possible to establish the effect of aging on the
phenomenon—namely, the effect of moving botht2 and t1
away fromt0 as well as the more traditional effect of increas-
ing the distance betweent2 and t1.

Note that the former correlation function is given by

Ast0dst2 − t1d = psAuB̄d. s30d

We defineA as the condition that botht1 andt2 belong to the
same laminar region. The symbolB denotes the condition
that t0 and t1 belong to the same laminar region. Conse-
quently, the right-hand term of Eq.(30) denotes the probabil-
ity that t1 andt2 belong to the same laminar region, given the
fact thatt0 does not belongto the same laminar region ast1,
which is in fact the earlier-defined correlation function,
youngerthan thest1− t0d-old correlation function, given the
fact we did not set the condition that the laminar regions
begin att= t0.

This aging correlation function can be expressed in terms
of the equilibrium correlation functionFjstd, using the gen-
eral prescription of Eq.(17). Let us see in detail how to do
that. The aged correlation function is the probability thatt1
and t2 belong to the same laminar region and thus is the
probabilty that propertyA occurs, with no other condition.
Consequently, we write

Fjst2 − t1d = psAd. s31d

By the same token, we write

Fjst2 − t0d = psA,Bd. s32d

In fact, thanks to the time orderingt2. t1. t0, the probability
that t2 andt0 belong to the same laminar region is equivalent

to the probability that bothA andB occur. Finally, the prob-
ability that t1 and t0 belong to the same laminar region is
equivalent to the probability that the propertyB applies,
thereby allowing us to write

Fjst1 − t0d = psBd. s33d

At this stage, it is straigthforward to realize the goal of ex-
pressingAst0dst2− t1d in terms of the aged corelation function
Fjstd. We plug Eqs.(31)–(33) into the right-hand side of Eq.
(17), thereby expressing the right-hand side of Eq.(30) in
terms of the aged correlation functionFjstd. The final result
reads

Ast0dst2 − t1d =
Fjst2 − t1d − Fjst2 − t0d

1 − Fjst1 − t0d
. s34d

It is easy to show that in the Poisson case Eq.(34) reduces to

Ast0dst2 − t1d = Fjst2 − t1d, s35d

independently oft0.
Now let us take the second step and explicitly evaluate

Fj
st0dst2− t1d. This aging correlation function is the sum of

two probabilities. The first contribution is the probability that
no event occurs betweent0 and t2, thereby ensuring thatt1
and t2 belong to the same laminar region. The second con-
tribution corresponds to the probability that an arbitrary
number of events occurred betweent0 and t1. Note that the
laminar region beginning att= t0 implies that at this time a
random event occurs, which is, in fact, the beginning of the
laminar region. As stated a number of times earlier, at the
beginning of any laminar region, we toss a coin to decide the
sign of the laminar region. This is the random event that
makes it possible for us to expressFj

st0dst2− t1d as follows:

Fj
st0dst2 − t1d = Cst2 − t0d + f1 − Cst1 − t0dg

3
Fjst2 − t1d − Fjst2 − t0d

1 − Fjst1 − t0d
. s36d

In Eq. (36) we have used the conventional notation of the
CTRW formalism[34],

Cstd ; E
t

`

dt8cst8d, s37d

wherecstd is the waiting time distribution of Eq.(10). Mon-
troll and Weiss[34] make the implicit assumption that the
laminar region begins att=0. Thus,Cstd is the probability
that no event occurs up to timet, after the random event
occurs at timet=0. Here we replace the initiation timet=0
with t= t0. Thus,Cst2− t0d is the probability that no random
event occurs betweent0 andt2, as required. The second term
in Eq. (36) is the product of the probability that one or more
events occurred betweent1 and t0, given the fact thatt2 and
t1 are in the same laminar region andt0 is not.

We note that Eq.(36) interrelates factorability and aging
and consequently is the most relevant expression for our dis-
cussion. The importance of this result can be made transpar-
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ent by going back to the discussion in Sec. II. Equation(34)
allows us to express the fourth-order correlation function of
Eq. (23) under the following form:

kjst1djst2djst3djst4dl
kj2l2 = Fjst4 − t1d + fFjst2 − t1d − Fjst3 − t1dg

3Ast2dst4 − t3d. s38d

As pointed earlier, in the Poisson case[see Eq.(35)],

Ast2dst4 − t3d = Fjst4 − t3d, s39d

independently oft2. By inserting Eq.(39) into Eq. (38) and
noting thatFjst4− t1d=Fjst4− t3dFjst3− t1d, we see immedi-
ately that the DF condition is recovered:

kjst1djst2djst3djst4dl
kj2l2 = Fjst2 − t1dFjst4 − t3d. s40d

Thus, we have established that the breakdown of the DF
condition and aging are interrelated. In fact, annihilating the
aging property has the effect of reestablishing the DF prop-
erty.

It is worth stressing that Eq.(36) rests on the same ap-
proximation as that used to derive Eq.(23)—namely, Eq.
(20). To make this fact more transparent, let us define a fur-
ther condition, calledC, as the occurrence of a random event
at t0. This defines a set of vanishing measures, compared to
conditionsA andB. However, it makes sense to set this con-
dition as a further constraint for the proper definition of con-
ditional probability. Thus, we write first the formal expres-
sion

psAuCd = psA,BuCd + PsA,B̄uCd, s41d

which is exact. Using the concept of conditional probability,
we turn this exact expression into

psAuCd = psA,BuCd + PsB̄uCdPsAuB̄,Cd, s42d

which is still exact. Let us make the approximation

psAuB̄,Cd < psAuB̄d. s43d

This has the effect of turning Eq.(43) into the approximated
expression

psAuCd = psA,BuCd + psB̄uCdpsAuB̄d. s44d

As to psAu B̄d, we have already expressed it asAst0dst2− t1d.
We also note that

psB̄uCd = 1 − psBuCd. s45d

We identify Cst2− t0d with psA,BuCd and Cst1− t0d with
psBuCd, given the fact that the last random event occurs at
t= t0 and no further random event occurs afterward. Thus, we
prove that that Eq.(44) generates Eq.(36) and, consequently,
that this expression for the aging correlation function rests on
the same approximation, Eq.(20), as that yielding the major
result of this paper—namely, Eq.(23): Equations(43) and
(20) share the property of being exact, if referred to a single
trajectory, and become approximate when used to make pre-

dictions on an ensemble of distinct trajectories.
The exact expression for the aging correlation function

can be found in the important and rigorous work of Ref.[35].
On the basis of earlier work on aging induced by non-
Poisson statistics[36] we expect that our result coincides
with the exact formula[see Eq.(9.1) of Ref. [35]] at both
small and large values oft0. A significant discrepancy is
expected for intermediate values, a price to pay to get an
analytical result that, although not exact, yields the signifi-
cant benefit of clarifying the connection between aging and
the DF breakdown.

IV. CONCLUDING REMARK

The equivalence between the trajectory and density pic-
tures of physical phenomena is one of the major tenets of
modern physics. It therefore came as quite a suprise when
Bologna et al. [20] discovered an inconsistency between
these two pictures in the case of nonordinary statistical me-
chanics. The form of the inconsistency had to do with the
derivation of anomalous diffusion of the Lévy kind, using
dichotomous noise and either CTRW or the generalized cen-
tral limit theorem. Both of these approaches use trajectories
and not the Liouville-like approach for densities, such as
does the GDE. It is a simple matter, using Eq.(8), to show
that the GDE yields a hierarchy of momentskx2nstdl with n
=1,2, . . .,which coincides exactly with the hierarchy gener-
ated by fluctuationsjstd satisfying DF. This factorization,
obtained using the density, contradicts the hierarchy gener-
ated using the trajectories in Sec. III. We have limited the
analysis to the fourth-order correlation functions; however,
this order is sufficient to identify the source of the inconsis-
tency between the trajectory and density pictures as being
due to the non-Poisson character of the statistics.

We have also shown that a departure from Poisson statis-
tics has the effect of introducing a memory into the correla-
tion functions that can last for an infinitely long time. For
dichotomous noise the two-time correlation function, using
either trajectories or densities, is the same; however, higher-
order correlations are not the same for non-Poisson statistics.
The deviation from Poisson statistics is manifest in a depen-
dence of correlations on the difference between the initiation
time and the observation time—that is, on the age of the
system. Age destroys the DF property and may represent a
state of matter intermediate between the dynamic and ther-
modynamic condition, mentioned earlier, the living state of
matter. This eternal state of nonequilibrium, in which a per-
turbed phenomena relaxes to, but never attains, equilbrium,
should be contrasted with the Onsager principle in which
physical systems are assumed to be aged. An aged physical
system is one that has reached equilibrium with a heat bath
long before measurements are taken.

It is evident that to establish a density picture equivalent
to the trajectory picture, in which the time averages and en-
semble averages are the same, in the non-Poisson as well as
in the Poisson case, we have to overcome the limitations of
the Liouville-like approaches of Refs.[17–19]. This difficult
issue calls for further research. Nevertheless, the merit of the
present paper lies in the fact that it has revealed the violation
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of the DF property when the statistics of the underlying pro-
cess are non-Poisson. DF is a factorization property assumed
for dichotomous noise by researchers in multiple fields, often
without the realization that such factorization is tied to the
statistics of the process.

It is worth remarking that Eq.(8), the general diffusion
equation, can also be derived by assuming that the random
sequencejstd is built up by time-modulating a generating
Poisson distributioncslstd ,td=expf−lstdtg as shown in de-
tail by Bolognaet al. [37]. The resulting sequence, however,
is not a renewal sequence, such as found in the CTRW for-
malism. We need to understand why abandoning the Poisson
assumption and adopting a Liouville-like approach leads to
physical effects that are inconsistent with renewal processes.
This is a difficult problem whose solution also requires ad-
ditional research. It is important to point out, to avoid any
possible confusion, that the GDE is widely used to describe
transport processes(see Refs.[38,39], for some recent pa-
pers). However, these papers refer to subdiffusion, a physical
condition where the correlation function of the fluctuationj
cannot be defined, not even in the nonstationary sense of
Sec. III. The discussion herein focuses on superdiffision and
addresses the problem of computing high-order correlations
for renewal process with nonexponential waiting time distri-
butions. The solution to this problem is given by Eq.(23);
however, this crucial property has not yet been obtained us-
ing Liouville-like methods[17–19].

In conclusion, by means of the conditional probability
formalism, we have found an analytical approximation to the
fourth-order correlation function, and we have shown that in

the non-Poisson case, this expression violates the DF condi-
tion. We have also established a close connection between
the DF breakdown and aging. The conditionm,2 is incom-
patible with the existence of equilibrium[6,30], thereby
making aging become a natural property. However, aging is
possible also in the case wherem.2, in spite of the fact that
in this case thermodynamic equilibrium is possible[30]. This
becomes evident ifm,3: We see, in fact, from Eq.(13) that
in this case the correlation functionFjstd is an inverse power
law with indexm−2. Thus, it takes an infinitely long time for
the age-dependent correlation function Eq.(36) to become
stationary.

We do not make any claim for generality. The key predic-
tion of Eq.(23) is not exact and its validity has been checked
numerically only in the region 2,m,3. Nevertheless, this
region is that discussed by Zaslavsky[40] as a prototype of
anomalous statistical mechanics generated by chaotic dy-
namics. This makes our conclusion of some interest, even if
it does not rest on an exact analytical formula of general
validity. In this sense, this is a remarkable result, which chal-
lenges the traditional treatments of such stochastic dynamical
processes based on the generalized master equation(GME).
The analysis of the GME based on these results will be taken
up elsewhere.
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